Europe/Lisbon
Room P3.10, Mathematics Building — Online

Simone Mauro

Simone Mauro, University of Calabria
The Nehari Method and least energy solutions for coupled nonlinear Schrödinger equations

The main aim of this talk is to discuss the existence of nontrivial (and non semi-trivial) least energy solutions for a Neumann elliptic system with a critical nonlinearity, characterized by a cooperative-competitive behaviour, namely
\[ \begin{cases} -\Delta u+\lambda_1 u=u^3+β uv^2 & \text{ in } \Omega\\ -\Delta v+\lambda_2 v=v^3+\beta u^2v & \text{ in } \Omega\\ \frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial \nu}=0 &\text{ on } \partial\Omega,\\ \end{cases} \label{eq:pbeta} \tag{$\mathcal P_\beta$} \] where $\Omega\subset \mathbb{R}^4$ is a $C^2$ bounded domain, and $\lambda_1,\lambda_2>0$ and the parameter $\beta\in\mathbb{R}$ captures the essence of cooperation-competition, assuming positive or negative values respectively.

The approach is variational and the idea is to minimize the energy functional on a suitable manifold of the Nehari type. In addition, to deal with the critical power, we estimate the energy level, using the solutions of $-\Delta w=w^3$ in $ \mathbb{R} ^4$ and the solution for the scalar equations $-\Delta u_i+\lambda_iu_i=u_i^3$ in $\Omega$, to establish a compactness condition based on the classical Cherrier's inequality: if $\partial\Omega\in C^1$ then for each $\varepsilon\gt 0$ there exists $M_{\varepsilon}>0$ such that $$\|u\|_{2^*}\le\left(\frac{2^{2/N}}{S}+\varepsilon\right)^{1/2}\|\nabla u\|_2+M_{\varepsilon}\|u\|_2,\ \ ∀u\in H^1(\Omega),$$ where $S$ is the best Sobolev constant. Additionally, I will discuss the more difficult cases in which $\lambda_1,\lambda_2\le0$, that I have started to study recently.