Room P3.10, Mathematics Building Instituto Superior Técnicohttps://tecnico.ulisboa.pt

Junwei Yu
Junwei Yu, Politecnico di Milano

In this talk, I would like to present some recent results on the existence and multiplicity of positive solutions in $H^1(\mathbb{R}^N)$, $N\ge3$, with prescribed $L^2$-norm, for the stationary nonlinear Schrödinger equation with Sobolev critical power nonlinearity. It is well known that, in the free case, the associated energy functional has a mountain pass geometry on the $L^2$-sphere. This boils down, in higher dimensions, to the existence of a mountain pass solution which is (a suitable scaling of) the Aubin-Talenti function. In this talk, we consider the problem in bounded domains, in the presence of weakly attractive potentials, or under trapping potentials, and investigate the following questions:

(i) whether a local minimum solution appears, thus providing an orbitally stable family of solitons, and

(ii) if the existence of a mountain-pass solution persists.

We provide positive answers under suitable assumptions. This is based on joint work with Dario Pierotti and Gianmaria Verzini (Politecnico di Milano).